

Terminal Velocity
Robert S. Muhlestein (rwxrob)

Version v0.0.1, 2025-01-02 21:26:24: Under development

Table of Contents
Copyright . 2

Dedication. 3

Preface. 4

Who should read this? . 4

The hacker’s way . 4

Write your own book . 5

Wax on, wax off . 5

Join a crew . 6

Find a mentor . 6

Become a mentor . 6

ChatGPT for learning. 6

Trust me, kiddo. 7

Dear parents and pedagogues. 8

Your script . 10

What is a script? . 10

Execute this . 10

Terminology. 18

Boost your coding, hacking, and learning with the fastest human-computer
interface

https://linktr.ee/rwxrob Download PDF Download EPUB

1

https://linktr.ee/rwxrob
./rwxrob-terminal-velocity.pdf
./rwxrob-terminal-velocity.epub

Copyright
Copyright © 2024 Robert S. Muhlestein (rwxrob). All rights reserved.

The code portions of this book are dedicated to the public domain under the terms of the Creative
Commons Zero (CC0 1.0 Universal) license (https://creativecommons.org/publicdomain/zero/1.0/).
This means you are free to copy, modify, distribute the code portions only, even for commercial
purposes, without asking permission, and without saying where you got them. This is so there is no
fear your creations are your own after learning to code using them.

The non-code prose and images are licensed under the more restrictive Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0)
(https://creativecommons.org/licenses/by-nc-nd/4.0/). This means that no non-code prose or image
from the book may be reproduced, distributed, or transmitted in any form or by any means,
without the prior written permission of the copyright holder. This includes remaking the same
content in different formats such as PDF or EPUB since these fall under the definition of derived
works. This restriction is primarily in place to ensure outdated copies are not redistributed given
the frequent updates expected.

"Terminal Velocity" is a legal trademark of Robert S. Muhlestein but can be used freely to refer to
this book without limitation. To avoid potential confusion, intentionally using this trademark to
refer to other projects—free or proprietary—is prohibited.

2

https://creativecommons.org/publicdomain/zero/1.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

Dedication
In memory of Aaron Swartz and Kris Nova,
whose contributions and spirit continue to inspire the pursuit of knowledge and innovation.

3

Preface
Hello, friend. Exciting time in the world. Exciting time. Systems are breaking. Power structures
are crumbling. Climate fluctuating. The ones who control the code, control the narrative and the
solutions. You see it, don’t you? Technology is reshaping everything—how we live, work, and
connect. Quantum and AI advancements are growing at exponential rates of exponential rates. The
terminal isn’t just a relic of the past; it’s the key to survival at this pace, understanding and
mastering the systems that drive the world forward. Everything can be accessed from a terminal.

“What is the most important thing you could be working on in the world
right now? And if you’re not working on that, why aren’t you?” (Aaron
Swartz)

Those not moving at terminal velocity will be left behind. While most of the world flails in chaos,
grasping for the next game, streaming video, or shiny desktop distraction, those who learn and use
the terminal see through the noise, into the Matrix, where they automating processes, secure
networks, and provide solutions to the world’s most dire and complex problems. Like anything
worth learning, these skills take commitment. Are you ready? Willing to put in the time? If so,
welcome to the edge, knowledge warrior. Now let’s get to work.

Data Science might be the fastest growing tech profession in 2024 (36% growth
rate)—having recently bested Security Analyst (33%) for that position—but you
need terminal skills for both.

I once watched a remote presentation from a data scientist who didn’t know about
mv name newname. 100 people watched him drop out of the terminal—where he was
already showing everyone how to do some data-science things—just so he could
rename a file. He minimized his terminal, opened the File Explorer, renamed the
file using the GUI properties dialog box, then reopened the terminal to continue. I
couldn’t believe it. Still blows me away today. It’s one of the reasons I wrote this.
Don’t get mad, get busy.

Who should read this?
This book is for anyone over thirteen who wants to master the terminal like a hacker. If you’re
under thirteen? I won’t know. But you should get your parents' permission—seriously. Services like
these don’t mess around when it comes to COPPA, and for good reason. If you’re younger than
thirteen, skip the parts of this book that require accounts or tools with age restrictions. Some
schools provide access to these services for kids. Ask. Hack the system the right way.

The hacker’s way
In this book, The Hard Way is better known as The Hacker’s Way. It’s not about doing things the
easy way or even the fast way—it’s about doing them your way. This path teaches you to think like a
hacker: to see every gap as an opportunity, every problem as a puzzle, and every limitation as a
challenge to overcome.

4

https://shodan.io

Here, we focus on what to learn rather than spoon-feeding you the how. You’ll find guidance on the
tools, concepts, and techniques that matter, but the specifics? Those are yours to discover. The
Hacker’s Way demands that you go beyond the pages of this book, leveraging your curiosity,
creativity, and the boundless resources of the digital world to piece it all together.

Why this approach? Because hacking isn’t about following instructions; it’s about breaking them
down, understanding them, and reimagining them. The act of figuring out how something works on
your own—not just by imitating but by innovating—is what transforms you into a true hacker. It
builds not just technical skills but also resilience, independence, and an instinct for solving
problems on your terms.

When this book leaves out the how, it’s intentional. It’s your cue to dig deeper. Fire up your search
engine, dive into documentation, and collaborate with your AI assistants. Don’t just find the
answer—dissect it, experiment with it, and make it yours. The Hacker’s Way is about mastering the
process, not just the outcome.

This is a mindset for those who thrive on challenges and who are willing to embrace the unknown.
It’s for the autodidacts, the problem solvers, and the terminal knowledge warriors. If you choose
The Hacker’s Way, you’ll gain something far more valuable than shortcuts: you’ll gain the ability to
create your own.

Write your own book
For a hacker, the best book isn’t something you buy—it’s something you create. Following a
textbook might teach you the basics, but it won’t sharpen the skills that truly matter: curiosity,
problem-solving, and adaptability. Hackers learn by doing, breaking things, and figuring out how to
put them back together better. Writing your own book filled with original notes in Markdown that
includes runnable code saved with Git is the ultimate extension of that process.

When you create your own book, you decide what’s important. Instead of passively consuming
information, you actively shape it, curating concepts and methods that matter to you. You
remember it better. This approach forces you to think deeply, experiment, and learn at your own
pace. Every chapter you write becomes a record of what you’ve discovered, how you’ve applied it,
and what you’ve learned in the process.

By building your own resource, you’re not just learning—you’re documenting your journey in a
way that’s meaningful and personal. Unlike a static textbook, your book evolves with you, reflecting
the growth of your knowledge and skills. It’s not just a guide; it’s a testament to your ability to hack
the learning process itself.

Wax on, wax off
Повторение — мать учения. Repetition is the mother of learning. Anyone who has ever done
anything worth learning knows not all procedures can be memorized and ready. You have to come
back to them and repeat them. This is why you setup your own learning lab where you take
dynamic notes that change as the times do and as you learn more. It’s the reason this book is
perpetually published. It’s never finished. A hacker’s learning never is. Always adapting and
acquiring new skills and knowledge. Once you think you’ve learned it all, you get taken out.

5

Join a crew
We humans are social creatures. Learning is communal. Join a community that is focused on
learning the same things as you. Meetups, hacker spaces, clubs, church groups, social media, and
live streamer chat groups are all great places to find a community. The community is a place to
collaborate and share peer reviews of one another’s learning and projects. Who knows, you might
find a friend. I did.

My sincere hope is that the parents, teachers, and young hackers reading these
words will find opportunities and motivation to create their own clubs and
communities dedicated to helping others master the art of the terminal command
line and bash scripting and all the well-earned benefits of doing so. While you are
working on creating your own community, consider joining my crew:
https://linktr.ee/rwxrob.

Find a mentor
Humans have been passing knowledge one to another since the beginning. It’s what we do. Wanna
forge a sword or horse shoe? Better find the blacksmith and get them to show you their craft.
Coding is no different. Just don’t ask them to teach you. They are probably too busy paying their
bills doing what they are good at rather than spending that time teaching you how to do it. If you
are respectful of their time, however, they might just be willing to mentor you—especially if you
show genuine interest in their craft.

You will find that many people want to share what they know but just don’t know how to do it or
who would want to hear. Find these people and approach them. Perhaps you can find a few
mentors so you can compare how they differ in their approach to programming.

Become a mentor
Here’s a secret a lot of people who get paid a lot of money don’t want you to know, you don’t need
any special training to help someone else learn. In fact, as a beginner who has recently mastered
something you are perhaps the best suited to help another beginner learn it because what made it
click for you is still fresh in your mind. Ask a veteran when the last time anything clicked for them?
They get so used to what they do they completely forget what it was like to be a beginner. So don’t
be shy. Offer your help to another beginner. And remember, you really haven’t learned it until you
can help someone else learn it as well.

ChatGPT for learning
In my experience ChatGPT is an absolute necessity for anyone wanting to truly take their learning
to the next level. I’m not getting paid to say that (but I would happily accept money for saying so).
You really should consider subscribing if you are serious about adopting an autodidactic lifestyle.
ChatGPT is specifically designed for general learning and creativity and runs on anything with full
contextual history. Mine has helped me keep my conversational Russian and French skills up,
planned bike trips, helped me code the mundane stuff, reminded me of things I forgot about,

6

https://linktr.ee/rwxrob

offered up random ideas, and so much more.

Claude, another AI assistant, is better for mods terminal API integration and for
coding.

Still skeptical? I know I was.

Here’s the thing. On demand learning exponentially increases when an AI is involved. Nothing
breaks through frustration and loneliness better when taking on learning challenges with a
supportive AI companion—even when a helpful human mentor is also available.

We are quickly approaching a time when the digital divide will no longer be just between those
who have computers and Internet access and those who do not, but between those who have
learned to leverage a personal AI assistant loaded with contextual history and those who have not.
Don’t get left behind.

We are already seeing this difference around us every day. I’m remarkably faster at the same job
now with AI doing the same thing I’ve been doing for four years, and that’s not even just the coding
part. Querying an AI is exponentially better for research than a Google search, provided I verify the
results, as always.

Trust me, kiddo
Most of us have to commit to one school (and no, not the kind with lockers and hall passes) to get
started. Like Neo with Morpheus, there’s got to be some level of trust—enough to take that first
leap. But here’s the kicker: you shouldn’t trust anyone, ever. Not until they’ve earned it. And yet,
how does someone earn your trust without you taking the risk to trust them first? It’s a paradox, a
mind-bending loop that feels impossible to solve. But it’s in that uncertainty, in that leap of faith,
where the real learning begins.

Commitment to a single school does not mean there is no value in others, or even that this school is
better. Just that you are dedicated to this one at the moment. You would never walk into a Karate
dojo and start talking about why Judo is a superior martial art. The masters of both dojos can even
strongly respect the other for their commitment despite their different approaches. The master of
the dojo need not justify why their form is better. That is up to the student to determine on their
own after they have mastered the forms. A master and mentor, instead, focus uniquely on the
advantages of the form they know and how to execute it.

Learning the terminal follows the same philosophy. At first, you’re typing commands, opening
multiple concurrent windows, and running programs without fully understanding how it all
connects. By focusing on the terminal environment and immersing yourself in bash’s syntax and
tools, you’re laying a foundation that will make advanced concepts easier to grasp later.

By dedicating yourself to the terminal you’re committing to a single, cohesive system. The
command line’s simplicity and clarity make it an excellent first experience with programming.
Every command line is a line of code. The terminal, as your dojo, reinforces this focus by stripping
away distractions and emphasizing direct, hands-on practice.

Through this focused practice, you begin to see the "why" behind the techniques, and the lessons

7

become part of your intuition, your faith transforms into fact. So dedicate yourself to this practice
right now.

Once you have mastered the basics of a single discipline, you are prepared to branch out. A martial
artist with a strong foundation in one style can explore others and integrate their techniques into a
unique, personal expression. Similarly, a terminal hacker with a host of commands at their
fingertips can easily add new ones—even create their own—by applying the foundational skills
they’ve gained.

Dear parents and pedagogues
Are you a parent or a teacher? If so, thank you for being awesome! It takes a lot to bring kids into
this world and even more to dedicate your life to helping kids that aren’t even your own to find
their way and learn something even if they don’t want to. Deep respect. But let’s get real. You’re
reading this right now wondering if I’m going to corrupt your children.

The answer is yes. Yes I am. In fact, my goal is to fully corrupt them much the same as Socrates. If I
am successful your children will become better that the status quo, they’ll think critically, ask
uncomfortable questions, and use their new powers and tools to ethically disrupt this broken world
transforming it into something better. They’ll become the most annoying people you’ve ever
known—in the best way possible.

Why me? Because getting people to discover this potential and realize it through their own learning
is my super power. I’ve been mentored by the best and I’m really good at it. Since the first time my
scouts begged "Mr. Rob, teach us to code. Mr. Rob, teach us to hack. Mr. Rob, teach us Russian." I
have been bound and determined to make this a reality. In fact, I started SKILSTAK Coding Arts in
2013 with my own retirement money to address the real needs of the tech industry and those who
might consider it as a career, raising a generation of highly skilled knowledge warriors.

Let me tell you about some of these amazing people:

• One of them quit his grocery clerk job to write code for a solar energy company and was paired
with essentially his own intern at 16.

• Another couldn’t get a job with a psychology degree so he learned this stuff and got a starting
salary over $100,000.

• A few people got coveted invitations to special FBI cybersecurity camps.

• One drove 40 minutes both ways just to attend our sessions for four years and went on to create
an entire coding club at her rural school.

• Some got cybersecurity degrees from accredited colleges and invites to work with professional
hacking crews.

It’s been a blast being with these people. My favorite memories are all the times we hacked
companies with permission and helped them patch their security, or shut down hackers for
panicked parents whose businesses had been compromised.

The point is, these success stories don’t have to be about someone else. They can be about someone
you know and love. Terminal tech skills really do change lives and I’m here to help in whatever way

8

I can.

9

Your script
The code is the documentation.

What better way to learn to code than programming yourself with actual code. Here you will find
everything you need to do and learn to optimize your personal performance with a Unix-like
terminal workflow in bash, a real language.

Not only will you be learning to use the terminal, you’ll become an interpreter as you read each
line, evaluate it, perform what it says, and loop to repeat that process for a new line, which is a real
thing called a REPL. In a very real sense, you take the place of the bash command shell interpreter
running on your computer. After all, the only difference between you and bash is your squishy gray
persistence layer.

Now would be a good time to go watch that scene from Star Wars, A New Hope,
where C3PO introduces himself as an interpreter who converts languages into
instructions other devices understand, like "Bocce" and "the binary language of
moisture evaporators." You’ll have a lot in common with C3PO while working
through this script.

What is a script?
An actor’s script and a bash script, though from vastly different domains, share a striking
similarity: both are carefully crafted sets of instructions designed to guide actions and interactions.
In an actor’s script, the lines of dialogue and stage directions dictate the performance, instructing
the actor on what to say, how to say it, and how to move or react. These instructions form a
blueprint for storytelling, where the actor becomes the interpreter, turning static words into
dynamic expressions.

Similarly, a bash script provides a series of commands that a computer interprets and executes,
automating tasks or orchestrating processes. Just as an actor’s script might include cues for a
dramatic pause or a sudden outburst, a bash script might contain conditional statements or loops,
signaling the system to pause, evaluate conditions, or repeat actions. Both types of scripts rely on
precise language to avoid misinterpretation—whether by the actor or the computer—and both
have an audience: the viewer for the actor’s script, and the user or developer for the bash script.

Ultimately, both scripts transform abstract instructions into meaningful action. An actor brings a
script to life by adding emotion and timing, while a bash script comes alive when executed,
interacting with files, systems, or other programs. In both cases, the effectiveness of the script
depends on the clarity of its instructions and the skill of its interpreter.

Execute this
In coding, the term execute simply means to carry out or perform a set of instructions. When you
execute a script or a program, you’re telling the computer to follow the sequence of commands it
contains and perform the tasks specified. This usage comes from the idea of execution as "putting

10

into effect" or "bringing something to life." It’s entirely unrelated to the darker connotation of the
word associated with capital punishment.

In programming, "execution" is a vital concept—it transforms static lines of code into dynamic
processes, turning logic and algorithms into actions that produce results. Whether it’s running a
script to clean up files, compiling code into an application, or querying a database, execution is
what bridges the gap between planning and doing. For learners, it’s helpful to remember that when
we say "execute," we’re referring to the moment a computer takes our written instructions and
makes them real.

Time for you to execute. Here’s your script. Now execute it. Follow each line and when you come to
a new one, see if there is a subroutine for that line that has more lines. You can think of it as a
textual flow-chart, because that is exactly what it is. You got this. Let’s go.

#!/bin/sh
set -e

TODO: finish this, still a work in progress

use_unix_terminal() {
 check_prerequisites
 #setup_terminal
 #navigate_file_system
 #manipulate_files
 #edit_files_with_text_editor
 #manage_screens_with_tmux
 #code_simple_shell_scripts
 #manage_source_with_git
 #manage_development_with_github
 #configure_interactive_shell
 #configure_vim_nvim
 #use_web_from_terminal
 #use_ai_from_terminal
 #use_irc_from_terminal
 #manipulate_text_with_perl
 #plan_next_move
}

check_prerequisites() {
 have_basic_linear_algebra # y = 2x + 3
 #have_6th_grade_reading_level # ex: The Boy Who Harnessed the Wind
 #have_compatible_computer # intel, apple, raspi, orangepi
 #have_admin_rights_on_computer # root, administator
 #have_internet_access # basic cable connection
}

have_basic_linear_algebra() {
 assert \
 "Do you have basic linear algebra skills?" \
 "Consider Kahn Academy."

11

}

----------------------------- utilities ----------------------------

assert() {
 printf "%s [N|y] " "$1"
 read -r resp
 if ["$resp" != y]; then
 echo "$2"
 exit
 fi
}

use_unix_terminal

----------------------------- old stuff ----------------------------

: <<-'EOM'
 setup_terminal_on_workstation() {
 :start_using_computer_efficiently # launcher, alt_tab, search_centric
 :start_using_unix_like_system # Ubuntu Linux, macOS, WSL2
 :start_using_package_managers # apt, brew, winget.exe

 read _rp "Do you care about colors and fastest terminal? [Y|n]" resp
 if [[${resp,,} =~ ^y]]; then
 :start_using_wezterm_terminal
 else
 :start_using_builtin_terminal
 fi
 }

 # Note that this includes both default PowerShell on Windows
 # as well as bash, zsh, and any other POSIX Unix shell.
 start_using_basic_shell_commands() {
 :start_working_with_files_from_command_line
 }

 start_working_with_files_from_command_line() {
 local mode=command_line_only
 :grok_file_system_heirarchy
 :grok_drive_mounting
 :grok_how_everything_is_a_file_in_unix
 :start_listing_files
 :start_navigating_file_system
 :start_finding_files_with_find_command
 :start_working_with_file_permissions
 :start_seeing_whats_in_files
 :start_modifying_files_without_editor
 :start_organizing_files
 :start_linking_files
 }

12

 start_using_web_from_terminal() {
 start_fetching_single_web_pages_with_curl
 start_browsing_web_with_w3m
 fetch_initial_lynx_config
 start_browsing_web_with_lynx # requires bash scripting skill
 }

 start_connecting_with_other_terminal_lovers() {
 start_watching_terminal_geeks_on_youtube
 start_chatting_with_twitch_terminal_streamers
 start_using_weechat_for_twitch_and_irc
 start_chatting_on_preferred_irc_channels
 }

 start_creating_advanced_terminal_apps() {
 :grok_map_filter_reduce_transform
 :start_creating_advanced_bash_commands # parameter expansion, hashes, etc.
 :start_creating_terminal_commands_in_go # flags, bonzai, cobra, bubbletea
 :learn_enough_lua_for_dynamic_configs # ~/.wezterm.lua,
~/.config/nvim/init.lua
 }

 start_managing_stuff_with_git() {
 grok_git_essentials # just for local backups
 start_using_bare_git_repos # just on local computer
 start_using_github # but not necessarily for everything
 start_dot_repo # often called "dotfiles"
 start_lab_repo # for notes and testing
 }

 start_creating_stuff_using_terminal() {
 start_editing_text_from_terminal # nano → ed → ex → vi (nvi) → vim → nvim
 start_using_terminal_multiplexers # screen → tmux
 start_taking_notes_in_markdown #specifically GitHub Flavored Markdown
 start_writing_basic_bash_scripts # but not too many until git
 start_custom_bashrc # more than just ~/.bashrc
 }

 start_creating_advanced_bash_commands() {
 create_filters_in_bash
 }

 declare _i TRUE=0
 declare _i FALSE=1
 #declare TERMPREF=wezterm

 start_using_dotfiles_repo() {
 : TODO pull in tmux.conf
 }

13

 start_writing_scripts_in_bash() {
 : grok_posix_vs_bash
 :customize_bashrc
 }

 start_using_with_irc() {
 :
 }

 start_using_unix_like_system() {
 start_using_basic_universal_shell_commands
 grok_history_of_unix
 grok_why_unix
 get_unix_like_system
 }

 start_using_wezterm() {
 launch_default_terminal
 install_wezterm
 config_wezterm_with_nano
 }

 start_using_package_managers() {
 grok_package_managers
 setup_package_manager
 }

 start_using_terminal_multiplexers() {
 grok_multiplexers
 install_tmux
 config_tmux_like_screen
 learn_tmux
 }

 config_tmux_like_screen() {
 : TODO give option to pull down reliable tmux.conf from Web
 }

 grok_multiplexers() {
 grok_screen_history
 grok_tmux_history
 if agree_to_config_tmux_like_screen; then
 download_tmux_screen_config
 apply_tmux_screen_config
 fi
 }

 download_tmux_screen_config() {
 :
 }

14

 apply_tmux_screen_config() {
 :
 }

 agree_to_config_tmux_like_screen() {
 :
 }

 grok_screen_history() {
 :
 }

 grok_tmux_history() {
 :
 }

 start_editing_text_from_terminal() {
 : customize_vim
 : customize_neovim
 }

 start_writing_your_own_docs() {
 :
 }

 start_using_git_and_github() {
 :
 }

 validate_computer_specs() {
 :
 }

 learn_alt_tab() {
 :
 }

 learn_launcher() {
 :
 }

 prefer_search_centric_navigation() {
 :
 }

 grok_why_unix() {
 :
 }

 grok_package_managers() {
 :

15

 }

 setup_package_manager() {
 :
 }

 launch_default_terminal() {
 :
 }

 install_wezterm() {
 :
 }

 start_using_computer_efficiently() {
 learn_alt_tab
 learn_launcher
 prefer_search_centric_navigation
 }

 config_wezterm_with_nano() {
 :
 }

 grok_unix_history() {
 :
 }

 launch_builtin_terminal() {
 if is_mac; then
 launch "terminal"
 elif is_win; then
 launch "wsl.exe" # we assume WSL2 was already installed
 elif is_lin; then
 : # TODO
 fi
 }

 press() {
 printf "Press the %s key." "$1"
 }

 enter() {
 printf "Type in '%s' and press Enter." "$1"
 }

 launch() {
 if is_mac; then
 :
 elif is_win; then
 press 'Win'

16

 enter "$1"
 elif is_linux; then # FIXME which linux
 :
 fi
 }

 have_mac() {
 if [["$OSTYPE" =~ ^darwin]]; then
 return $TRUE
 else
 return $FALSE
 fi
 }

 get_unix_like_system() {
 if have_mac; then
 install_brew
 fi
 }

 install_brew() {
 echo would install brew
 }

 boost_to_terminal_velocity
EOM

17

Terminology
Let’s cover some terms that will help understand what you have been doing. You don’t have to read
them all now, but see if you can identify them in the code that follows:

• Procedure - a set of instructions to accomplish a task

• Scope - how high or low the level of instructional detail

• Algorithm - mostly just a fancy way to say procedure

• Task -

• Skill -

• Ability -

• Knowledge -

• Operation -

• Parameter - a variable passed into a function, method, or procedure from an argument

• Argument - a value assigned to a parameter variable

• Variable -

• Constant -

• Type -

• Object -

• Method -

• Function - optionally put something in, get something out, like a machine

• Subroutine - a reusable block of code including methods, functions, procedures

18

	Terminal Velocity
	Table of Contents
	Copyright
	Dedication
	Preface
	Who should read this?
	The hacker’s way
	Write your own book
	Wax on, wax off
	Join a crew
	Find a mentor
	Become a mentor
	ChatGPT for learning
	Trust me, kiddo
	Dear parents and pedagogues

	Your script
	What is a script?
	Execute this

	Terminology

